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The author proposes a generalization of the known particular laws of mass and energy transfer and their
extension to non-equilibrium processes.

In recent years thermodynamic methods have been widely used to investigate mass and energy transfer processes.
This has resulted in the development of a branch of science, called the thermodynamics of irreversible processes, whose
main hypothesis, local thermodynamic equilibrium, enables the first and second laws of thermodynamics to be applied
to nonequilibrium systems.

The new principles in the thermodynamics of irreversible processes are the linear law and the Onsager reciprocity
relation.

According to the linear law, the flux I; due to forces Xj is proportional to these forces:

k=n

IiZELikxk (i=1,2,...,n).

k=1
The linear law has no theoretical basis, being purely empirical.

The Onsager reciprocity relation is formulated as
Lik:‘Lki (L, k: l, 2, veey ﬂ).

The relation written indicates that the separate irreversible processes are interrelated. They are superposed one on
another and give additive mass and energy transfer effects.

In [1] the new principles of thermodynamics of irreversible processes were applied to the separation of molecular
solutions and gaseous mixtures, the authors managing without the second law of thermodynamics.

In [2] the thermodynamics of irreversible processes was applied to flow of 2 monocomponent liquid through a
porous medium. Here the linear law was used as an independent principle unrelated to the second law of thermodynamics.

In the thermodynamics of irreversible processes, the second law is formulated essentially in the same way as in
classical thermodynamics. For the thermodynamics of irreversible processes this formulation is insufficient, and we are
compelled to introduce the linear law as a new independent principle.

The introduction of the linear law without relation to the second law is a definite shortcoming of the thermody-
namics of irreversible processes.

Even in a more specific formulation [3], the second law remains a particular law that determines only temperature
heat transfer processes.

For the theory of irreversible processes, a mass and energy transfer law is required, the generalization of which
would correspond to the laws of conservation of mass and energy.

The author has attempted [4, 5, 3] to formulate the law of mass and energy transfer in a more general form than
usual, In the papers cited assumptions were made regarding the mass and energy capacity of a physical body. These
assumptions are essentially identical and may be combined into one assumption about the spatial capacity of the
physical body.

Increase of the spatial capacity of the physical bodies participating in mass and energy transfer processes leads
to corresponding expressions for the mass and energy transfer vectors. These expressions, however, prove to be only
particular expressions, which are valid for steady mass and energy transfer processes, whereas, strictly speaking, they
do not hold for unsteady processes.

A more detailed examination of mass and energy transfer processes leads to the conclusion that these processes
are determined by variation of the quantity k, which is measured as the product of the body volume V and the time of
its existence T (k =V 7).
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The quantity k characterizes the space-time region of existence of the body, and may be called its stereochrone
(the space~-time continuum of the body).

Let a continuous medium be in an unsteady equilibrium process of change of state. In this medium at the final
instant of time 7 we select a volume V. The mass M and energy E of the medium in volume V will depend on the
values of V and 7.

The process under examination is characterized by the mass and energy transfer of the medium in volume V, to
and from the external medium surrounding it. We shall designate by M; and Eg the amount of mass and energy which
pass through the surface S of volume V in time 7, and call them the mass and energy surface fluxes. Clearly, Mg and Eq
will be functions of V and 7.

The medium may have mass and energy sources. Let My and Ey be the mass and energy liberated in volume V in
time 7. The quantities My and Ey, called mass and energy source fluxes, will be functions of V and .

The equations of conservation of mass and energy for an unsteady equilibrium process of change of state of the
medium may be written as

M -+ Ms + My =0, (1)
E+Es+ Ey=0. (2)
The medium included in region V may be in an isochoric, isochronic, or total process of change of state.

In an isochronic process the time of existence of the medium 7 remains unchanged, while the volume V of the
medium varies.

In an isochoric process the volume V of the medium remains constant, but the time 7 of existence of the medium
varies.

An isochronic and an isochoric process form the total process of change of state of the medium.

Carrying out partial differentiation of (1) with respect to V, we obtain

oM . OMs oMy

+ =0
ov oV ov
The derivatives dM/0V and dMy /OV are, respectively, the density p of the medium, and the mass source flux density
Py
The derivative OM,/0V is the divergence of the total mass transfer vector Q, , which is related to time 7
OMs/oV = divQ,,
Taking the above into account, we may write
o+ divQ, +p, =0,
or
._*O_+div_(_l_“"_ ﬁ;ﬁ_: . (3
T T T
Equation (3) is the equation of conservation of mass in an isochronic process.
Carrying out partial differentiation of (1) with respect to 7, and multiplying the sum obtained by V, we have
1 oM 1 0OMs 1 oMy
T o TV ar TV e 0
or
dp,
a;’ +diva, —éf;‘—- 0, @
where
Qu = aQM/a T.
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Equation (4) will be the equation of conservation of mass in an isochoric process.

Combining (3) and (4), we have

p 0. d oy,
o i (4 S,
T

T T T dt
or
2R -+ div Qs + S = 0. (5)
Equation (5) is the equation of conservation of mass in the total process.
Differentiating (1) with respect to k, we have
M, dMs | dMy
de ' de  dk '
Evidently,

dk
dMV ) 0 —].— d PV —0 .
dk T ot "Wk

The sum of the right sides of these equations gives (5). Similar calculations may be carried out with the equation
of conservation of energy (2), and the following modified form obtained:

._A___.__}_div..g_.e__*— AV = U,
T 1 T (6)
O,
_(3i+d1 ﬂe__}_i:()’ (1)
T dt ot

. 8
&, +divge,+ e, = 0. ®)

Here ¢, Qe and &, are the energy density, the vector sum of energy transfer, and the energy source flux density.
The discussion has shown that the total mass transfer vector @, is composed of the mass transfer vector in an isochronic
process Q,/t and the mass transfer vector in an isochoric process 0Q,/0t, i.e.,

Q, 9,

Qe = — T ~———.
* T ot
The same may be said of the total energy transfer vector
Qe Qe
Qep= — T —
T dv

The above equations were obtained for an unsteady equilibrium process. Using the hypothesis of local equilibrium,
it is not hard to show that these equations will also be valid for an unsteady nonequilibrium process.

A viscous physical body changes its mass and energy in space and time.

The space and time changes of mass and energy of the body are related to changes of volume and time of existence
of the body, and therefore, to its stereochrones.

Changes of mass and energy of a body require corresponding changes of mass and energy of other bodies surrounding
it, producing mass and energy transfer between the bodies.

Mass and energy transfer between the bodies is determined by the law of conservation and transformation of mass
and energy, mentioned above.
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This law, however, proves insufficient for a complete description of mass and energy transfer processes. The law
of mass and energy transfer is also necessary, a generalization of which would correspond to the generalization of the
laws of conservation and transformation of mass and energy.

The stereochrones of bodies vary in the process of mass and energy transfer between bodies.
The law of variation of stereochrones of interacting bodies will also be a law of mass and energy transfer.

This law is based on experimental data, generalized in the form of known particular laws of mass and energy
transfer.

The law of mass and energy transfer is phrased for equilibrium processes with constant rate of change of the body
parameters. The hypothesis of local equilibrium gives a basis for extending it to nonequilibrium processes.

For isochronic, isochoric, or total processes, the law of mass and energy transfer may be expressed thus: the total
change of the stereochrone of physical bodies taking part in an isochronic, isochoric or total mass and energy transfer
process has the largest positive value.

Let us take n physical bodies participating in a mass and energy transfer process.

Let the stereochrone of the i-th body have the value ki, and receive the increment Ak; in the mass and energy
transfer process.

The law of mass and energy transfer requifes that the relation
v i=n :
Z Ak; = + max (9)
i=l
hold in the processes concerned. ‘

The right side of the equation represents the greatest positive value under the conditions of the process.

We shall designate by »; the specific increment of the stereochrone per unit volume of the i-th body per unit
time. Clearly,

% = A%

On the basis of the law of mass and energy transfer we may write
i=n
Zv.i: -+ max, (10)

i.e., the total specific change of the stereochrone of the physical bodies taking part in an isochronic, isochoric or total
mass and energy transfer process has the greatest positive value.

We shall apply the law of mass and energy transfer to a continuous medium. The unsteady nonequilibrium process
of change of state of a continuous medium may be represented in the form of a spatial series of processes in unsteady
equilibrium in space, each proceeding in a local volume v.

An unsteady process in equilibrium in space in a local volume v may be represented in the form of a time series
of unsteady processes in equilibrium in time, each existing in volume v in a local time interval t, with severally con-
stant rates of change of parameters of state of the medium.

The process of change of a constant medium in a local volume v during a local time interval 7, is a local process.

The total process of change of state of a medium, as has been pointed out above, comprises an isochoric and an
isochronic process.

In an isochronic process of change of state of a continuous medium, the stereochrone changes because of an in-
crement in the volume of the medium its transport by the moving medium, and also because of the action of the mass
sources of the medinm. :

In the process described the volume V of the medium receives an increment v, with constant time of existence 7,
in consequence of which the mass content M of the medium per unit volume changes by an amount 0M/0V, equal to p.

oM

The mass increment per unit stereochrone is determined by the derivative (‘—

ok ).

Since
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oM\ oM [ v
( ok )._” v \ ok /.
k:Vr,

(_‘?_44_>_L
ok . 1

Consequently, a volume increment V, equal to unity, causes stereochrone increment equal to p/(p/T).

and

The mass transfer process in an isochronic process is characterized by the total transfer vector Q.

We shall divide this vector by p/T. The result is a vector Q,/(p/t), whose modulus is equal to the amount of the
stereochrone carried by the medium through unit area of an area element located perpendicular to the direction of
motion of the medium, during the time of existence of the medium 7. The vector Q,/(s/1) may be called the total
stereochrone transfer vector.

The medium sources per unit volume give a medium mass py;, which causes a change pV/(p/ T) in the medium
stereochrone.

In an isochoric process of change of state of a continuous medium, the stereochrone changes due to an increment
of time of existence of the medium, its transport by the moving medium, and due to the action of the medium's mass
and energy sources.

The increment in medium existence time changes the medium mass per unit volume v per unit time by an amount

3, /0.

. . d(g
The mass increment per unit stereochrone per unit volume v is determined by the derivative [—é‘—v)— .

Since v
Taew ] _ aev) ot )
ok |, ot \ ok |y
and
k=vr,
o | _ % _ .
ok |, Ot e
Therefore, a time increment 7, equal to unity, causes a stereochrone increment equal to —Z—p— / ) .
T

The mass transfer process in an isochoric process is characterized by the transfer vector q,. We shall divide this
vector by the rate of change of mass density ﬁp.

The result is the vector qM/ﬁp, whose modulus is equal to the amount of stereochrone carried by the medium
through unit area of an area element situated normal to the direction of motion of the medium, per unit time. The
vector q,/%, may be called the stereochrone transfer vector.

The action of the medium sources changes the stereochrone of the medium by the amount (0p,/0 ‘c)/n‘}P per unit
volume and unit time.

In a total change of state process, a change of stereochrone arises from a change of the volume of the medium and
the time of its existence, from transport of the stereochrone by the moving medium, and from a change of stereochrone
due to the action of mass and energy sources.

The change of medium volume and of its existence time change the stereochrone of the medium by an amount

The total stereochrone transfer vector is
Qui/0-

Mass sources cause a stereochrone change of 1,,/0¢.
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Let us turn to an isochrone change of state process, in which the existence time 7 of the medium remains un-
changed, but the volume V changes by an amount v.

An increment of volume V equal to v causes an increment of the stereochrone of the medium equal to pv/(p/T).

A local volume surface increment d o causes an increment of mass surface flux (), o do, which changes
the stereochrone of the medium surrounding volume v by an amount @, ¢d o/(5/7).

I

For the whole surface ¢ the change is ‘S

QM.S d(f.

pl*

The change of the stereochrone of the medium surrounding volume v due to the action of mass sources has the
value pvv/(p/'r).

On the basis of the law mentioned above, it may be asserted that for the total change of stereochrone of the
medium surrounding local volume v, and of the medium in velume v, we have the relation

1 o

B

pVT Qm.s ‘O/VT .
A k= 1t do+ L = -+ max.
p . g
o

Hence

ZV:L+ div (Bﬂ—) -+
e 4

.0 174

= - Imax.
p

On the right side of these relations appears the largest positive value in the given conditions of the process.

Since

div ( Q. ) = ~—1——dinM + (QM, grad —1~) ,
o p

(04 v, +7) + (QM, grad pi) — + max,

or, taking (3) into account, we may write

%, = <QM, grad ) = - max.
o
Evidently,
grad—l— = — —-12— gradp,

P 4

which gives
%, = — —IZ— (Q,, gradp) = -+ max. (11)
4

Hence

(Q,, gradp) = — max,

i.e., the scalar product of vectors Q,, and grad p has the largest negative value.

The relation obtained requires that vector Q,, be parallel to the vector grad p and oppositely directed, i.e., 1o
ensure the equality .

Q, =—A,gradp. (12)

Equality (12) also determines the absolute value and the direction of the total mass transfer vector in a continuous
medium in an isochronic process.

In the equality stated, the variable Ap, characterizes the mass transfer intensity in an isochronic process and may
therefore be called the mass transfer coefficient. This coefficient is an increasing function of the existence time T of

the medium.
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Dividing both sides of (12) by 7, we obtain

Q Ay
rM =—— grad p. (13)

The vector Q,/T is the specific mass transfer vector in the isochrone process. It relates to the final instant of the
existence time T of the medium.

Above we established relation (11). It determines the value of the specific increment of stereochrone xy.
Substituting (12) into the left side of (11), we obtain

, = Ay(grad p/p)*. (14)
Relation (14) states that the transfer coefficient Ay, is a real positive value.
Let us now examine an isochoric change of state process.

We recall that in this process volume V remains unchanged, while the existence time T of the medium is changed
by the value of the local interval Ty

A change of medium mass in volume V in unit time, equal to gﬁpdV, changes the stereochrone of the medium in

)
unit time by an amount S‘—gp—d[/ .
vooe

Through the surface element dS of volume V at the instant of time T in unit time, a mass gy.¢ dS of medium
flows. This mass changes the stereochrone of the medium surrounding the volume by an amount g, s dS/9, in unit time.

For the whole surface S, the change in question will be

(usds/m, o {divig.)av.
$ 14

The change of stereochrone of the medium surrounding volume V due the medium sources in unit time will be

ijdv m, =
™, m,

§

v °

0t

From the law of mass and energy transfer, it may be stated that for the total change of stereochrone of the medium
surrounding region V, and of the medium in region V, in unit time we have the relation

' ) " m
Vi, = ‘g—‘ldv—{-jdiv (.f‘_)dwr fidv= + max.
Y 'ﬁp v ) v 'ﬂ‘P

?

On the right side of this relation there is the greatest positive value in the given conditions of motion of the
medium. Since this relation is valid for a sufficiently small volume V,

L Qs m
x::—L'diV( > Y — + max.
. ™ ) +1‘}

o P ¢
‘Recalling the formula

div () = gdiva + (@ @),
14

we obtain

T

= i (8, 1V Gy ) (@ €rad §) = - max,
3

or, taking (6) into account, we obtain

% = (qM, grad -g——) = - max.
p
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Evidently,

grad—ﬁ— = — ég—grad B,
Therefore
1
= —,E,‘;(qw grad 9 ) = -+ max. (15)
Hence
(4, grad @) = — max,

i.e., the scalar product of vectors ¢, and grad «‘.}p must have the largest negative value.
The relation obtained requires that the equality
qQy = — AM grad 'ﬂ“g (18)
hold.

We note that in (12) and (16) the transfer coefficients Ay, are identical, since they are determined by identical
values of the existence time 7 of the medium.

Let us return to relation (15). This relation gives the value of change of stereochrone of the medium per unit
volume and unit time in the isochoric process.

Allowing for (16), we may write (15) in the form

v = A,(grad 8 /§ )*. (17)
Relation (17) again shows that the transfer coefficient A, is a real positive value.
The isochronic and isochoric processes form the total process of change of state of the medium.

The specific mass transfer vector in the total process q,, is equal to the sum of vectors (13) and (16)

Qup = — Ay grad p — A, grad ¢,. (18)

T

This same expression may be obtained from the following considerations.

In the total process a change of mass of medium in volume V, equal to | g, dV, changes the stereochrone of the

D 4
medium in volume V by an amount g‘——i av.

k2 Pk
v

Through the surface element dS of volume V at time T there flows in unit time a mass of medium Gy, dS, which
changes the stereochrone of the medium surrounding volume V by an amount (Gys/0,)dS.

For the whole surface S the change in question is
[ div (Guadon) dV.
‘/;

The change of stereochrone of the medium surrounding volume V due to the action of sources of the medium in unit

time is equal to S (m, /o) AV
1

From the law of mass and energy transfer we may write the relation

Iz m R
j—e’z—dV—l—ydivjﬁLdV—{-'r VE_dY = - max.
Y Pr ) Pr i) Pr

This relation is valid for an arbitrary object. Therefore

m
1 . ,

Pe o diy e TVE L max,
Dk (g Pr '

h
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Taking (5) into account, we have

(que, gradp;) = — max.
This relation leads to the expression
Qu. = — Ay gradp,. (19)
which also determines the total mass transfer vector.
Since
‘ d
tO — _g_._ .__p_. y
T drt

(19) is identical to (18).

Expression (18) shows that the mass transfer vector is determined not only by the mass density gradient, but also
by the gradient of rate of change of mass density.

If the medium is in a steady nonequilibrium change of state process, the equality 0 5/0 © = 0 holds, and (18) takes
the form

Ay grad n.
T

Qur, =

For sufficiently large t|t — oco|, Ay, becomes sufficiently large | Ay = o |, in consequence of which A,/x = o0 /.
Removing the indeterminacy, we obtain
AM/T = BAM/O T.

In the case examined

q = EM_ == —————aQM = q
Mk < Py M
Therefore
Gu= — aAM grad .
T

Introducing the notation 0A4,/0* = @, we have
Gy = —ay gradp. (20)
This expression also determines the mass transfer vector in an unsteady process that is only slightly different from the
steady.

Let the medium be in a steady change of state process, i.e., let the medium be in a state of equilibrium during
an infinitely large time interval. In this case the total mass transfer vector equals zero, and from (18) we obtain the
equation

— Ay gradp — A, grad 9, = 0.
< .

This equation shows that in a medium in a prolonged equilibrium state, two mass transfer vectors exist; these are equal
in modulus but opposite in direction.

Above we have examined mass transfer processes in a continuous medium. A similar examination may also be
made for energy transfer processes in a continuous medium. Such an examination leads to the relation

A 3
Qo= — —2grade — A grad —a—— (2D
T ot

This relation shows that the total energy transfer vector is determined not only by the energy density gradient, but also
by the gradient of rate of change of energy density.
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